Wissenschaftstheoretische Grundlagen der sozialwissenschaftlichen Forschung

Dr. Andreas Rasche

Helmut-Schmidt-Universität,
Universität der Bundeswehr Hamburg
Overview

PART I - What is the Philosophy of Science All About?

PART II - Problems Associated with the Purpose of Science
1. Paradigms and Incommensurability Problems
2. The Relation Between Theory and Practice
3. ‘Tell Me the Truth’ - Science as Social Construction

PART III - Methodological Alternatives for Research in the Social Sciences
1. Qualitative and/or Quantitative Research?
2. Designing Qualitative Studies
3. ‘Doing Fieldwork’ - Collecting Qualitative Data
4. ‘Writing It up’ - Organizing, Analyzing, and Reporting Qualitative Data
5. Doing Case Study Research

PART IV - Writing for Scholarly and Non-Scholarly Publication
Seminar Objectives

- understand the different perspectives on the purpose of science

- explain the relationship between theory and practice

- know how to present and defend a research design that is based on qualitative methods

- understand how to collect data in the field and know possible pitfalls within this data gathering process

- learn how to conduct an interview and to design a case study

“One keeps forgetting to go right down to the foundations. One doesn’t put the question marks deep enough down.”

Ludwig Wittgenstein
(Culture and Value [Miscellaneous Remarks])
Literature

PART I

What is the Philosophy of Science All About?
How and to which end do we ‘do’ theorizing in the social sciences?

How do we ‘solve’ problems that occur in the realm of practice?
What is the Philosophy of Science?

The philosophy of science is a reflection on the nature and practices of science. It is meta-theoretical in the sense that it questions what science is all about.

(Jones, 2007: 1243)
The Philosophy of Science and Research in the Social Sciences

Philosophy of Science

Objectives of Science

Results from Science

Methods of Science

Purpose of Science (PART II)

What is the purpose of science? What should be the purpose of science?

Methodology (PART III)

What are the methods of science? What should be methods of science?

Social Sciences
PART II
Problems Associated with the Purpose of Science
1. Paradigms and Incommensurability Problems
What is the Purpose of Science?

To discuss the consequences of these positions, we need to look at the paradigm phenomenon!
How Do Scholars Define a Paradigm?

Paradigms occur with regard to a *specific field of research* (e.g., strategic management) and need to be understood as “universally recognized scientific achievements that for a time provide *model problems and solutions* to a community of practitioners.” Kuhn (1970/1996: 10) stresses the model character of paradigms because they are “[...] accepted examples of actual scientific practice [which] provide models from which spring particular coherent traditions of scientific research.”

Burrell/Morgan stress the meta-theoretical character of paradigms, however are less concerned with the field of research the paradigm addresses. “We are using the term ‘paradigm’ in a broader sense than that intended by Kuhn. Within the context of the present work we are arguing that social theory can be understood in terms of the co-existence of four distinct and rival paradigms defined by very basic meta-theoretical assumptions in relation to the nature of science and society.” (Burrell/Morgan 1979: 36)
Criteria for Distinguishing Paradigms

Because it is not possible to neglect either the field of research or meta-theoretical assumptions, we define paradigms as *universally recognized scientific achievements that provide model problems and solutions by referring to certain meta-theoretical assumptions*.

Criteria to distinguish paradigms:

- Model Problems and Model Solutions
- Methodology
- Disciplinary Roots
- Meta-Theoretical Assumptions (e.g., ontology, epistemology)

These criteria are interrelated (e.g., disciplinary roots have a significant influence on methodology and meta-theoretical assumptions).
Example - Paradigms in Organizational Analysis

Subjective

Radical Humanist

Constructivist

Regulation

Objective

Radical Structuralist

Functionalist

Example - Paradigms in Strategy Research

<table>
<thead>
<tr>
<th></th>
<th>Planning (1960s)</th>
<th>Forecasting (1970s)</th>
<th>Market-Based (1980s)</th>
<th>Resource-Based (1990s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Problem and Solution</td>
<td>Problem: set up long range planning practices in individual firms
Solution: general management as leader</td>
<td>Problem: forecast performance by looking at firm characteristics
Solution: portfolio, PIMS, experience curve</td>
<td>Problem: assess competitive advantage by analyzing industry
Solution: five forces and generic strategies</td>
<td>Problem: assess competitive advantage by analyzing firms
Solution: identify valuable resources</td>
</tr>
<tr>
<td>Methodology</td>
<td>single in-depth case studies based on inductive research</td>
<td>deductive research based on falsification and multivariate statistical methods</td>
<td>deductive research based on statistical methods combined with mini-cases</td>
<td>inductive case study approach combined with quantitative measures (small samples)</td>
</tr>
<tr>
<td>Disciplinary Roots</td>
<td>not specified</td>
<td>largely unspecified, economics (econometrics) for methodology</td>
<td>economics (industrial organization)</td>
<td>economics, organization theory, and sociology</td>
</tr>
<tr>
<td>Meta-Theoretical Assumptions</td>
<td>high environmental determinism / high need for planning</td>
<td>high environmental determinism / high need for planning</td>
<td>moderate environmental determinism / high need for planning</td>
<td>moderate environmental determinism / not much concerned with process issues</td>
</tr>
</tbody>
</table>
Which Paradigm Got It Right? - Is There a Truth?

- Even though it is possible to identify ‘dominant’ paradigms, there are still a variety of competing positions that deal with the same phenomena (e.g., an organization or a strategy).

- Why are there so many different paradigms?

 (1) The social sciences usually deal with highly complex social systems that face a variety of problems.

 (2) Each problem can be described from different theoretical perspectives.

How do we cope with paradigmatic diversity?
Which paradigm reflects the ‘truth’?
Ways to Cope with Paradigmatic Diversity

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Principle</th>
<th>Problem</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domination</td>
<td>There should be only one dominant paradigm.</td>
<td>“Make a decision among competing paradigms!”</td>
<td>Impossibility to justify the decision for or against a paradigm.</td>
<td>The field may be regarded as ‘mature’. Easy evaluation of research results.</td>
</tr>
<tr>
<td>Moderate Pluralism</td>
<td>Pluralism is not the goal but a necessary step to describe complex phenomena. Pluralism will end in a domination of one paradigm.</td>
<td>“Everybody should be heard until the best paradigm is found!”</td>
<td>One gets lost in the ‘paradigm jungle’. Evaluation of results only under consideration of the paradigm.</td>
<td>The complexity of the object of analysis is considered and reflexivity is enhanced.</td>
</tr>
<tr>
<td>Radical Pluralism ('Anything Goes')</td>
<td>There are no inner-paradigmatic rules to determine rationality anymore.</td>
<td>“Everything is possible!”</td>
<td>Evaluation of research results becomes impossible.</td>
<td>One may be able to grasp the full amount of complexity of the object of analysis.</td>
</tr>
<tr>
<td>Integration</td>
<td>There should be multiple paradigms that need to be integrated in one whole. Contradictions may occur, but are no obstacles.</td>
<td>“Take the best of all and combine it!”</td>
<td>By trying to see everything, one may end up seeing nothing at all.</td>
<td>Captures the complexity of the object of analysis.</td>
</tr>
</tbody>
</table>
Paradigmatic Inquiry and Incommensurability

<table>
<thead>
<tr>
<th>Type</th>
<th>Relation to Incommensurability Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domination</td>
<td>Rejects (there is one best way)</td>
</tr>
<tr>
<td></td>
<td>“There should be only one dominant paradigm”</td>
</tr>
<tr>
<td>Moderate Pluralism</td>
<td>Affirms and Rejects</td>
</tr>
<tr>
<td></td>
<td>“Paradigms are incommensurable, however a best one can be identified (in the long run).”</td>
</tr>
<tr>
<td>Radical Pluralism</td>
<td>Affirms</td>
</tr>
<tr>
<td>(“Anything Goes”)</td>
<td>“Paradigms and theories within paradigms are incommensurable and exist isolated from each other.”</td>
</tr>
<tr>
<td>Integration</td>
<td>Affirms and Rejects</td>
</tr>
<tr>
<td></td>
<td>“There are incommensurable paradigms that can be combined.”</td>
</tr>
</tbody>
</table>

Incommensurability:

Describes the non-comparability of two or more paradigms because of differing standards of rationality. Knowledge can be tested in accordance with the paradigmatic assumptions only. A trans-paradigmatic comparison of knowledge is impossible.
2. The Relation Between ‘Theory’ and ‘Practice’
Academic Research - Irrelevant?
Overcoming the Relevance Gap - Traditional Views

Knowledge Production

- e.g. Gibbons et al. (1994)
- improve relevance by rethinking the process of knowledge production and the nature of knowledge that is produced

Knowledge Transfer

- e.g. Buckley et al. (1998)
- improve relevance by rethinking the communication between practitioners and scholars (e.g., through joint conferences, ‘accessible’ writing)

Assumptions in the Discussion of Relevance
• **Assumption 1**: knowledge flows from theory to practice

 ![Diagram](source: Starkey & Madan 2001: S6)

• **Assumption 2**: relevance can be achieved, if the ‘right’ measures are implemented

• **Assumption 3**: there are different modes of knowledge production (Mode 1 = traditional; Mode 2 = practically relevant); there is, however, no judgment as to the value of either mode of knowledge production (Gibbons et al. 1994)
Towards A Non-Linear Perspective

Society

‘Practice’
(Autopoietic Functional System)

‘Science’
(Autopoietic Functional System)
“Science can, under these conditions, never be fully applicable; it can never be fully instrumentalized. Its traditions are too clumsy and its methods not context-specific enough. Science is autonomous because of its status as a differentiated functional system in society, and this is what we can show by taking the detour of a systems theoretical analysis.” (my translation and emphases)

Niklas Luhmann (2005b: 374)
Consequences of a Systems Perspective

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scientists are interested and judged according to the distinction ‘truth/untruth’, they do not leave this code but instead ‘dig deeper’. The resulting differentiation of research problems requires new terminology and references to existing theory.</td>
</tr>
<tr>
<td>2.</td>
<td>Attempts to translate the work of scholars may not be successful because in order to understand an argument one needs to be familiar with ‘connected’ communications in the system of science.</td>
</tr>
<tr>
<td>3.</td>
<td>Because of the autopoietic nature, science cannot be synchronized to whatever happens in practice. Science, in a sense, ‘lags behind’ the problems that occur in practice.</td>
</tr>
<tr>
<td>4.</td>
<td>There is a ‘double problem of scientific relevance’ because of the autopoietic nature of (a) the functional system and (b) the organization (e.g., business school).</td>
</tr>
</tbody>
</table>
3. ‘Tell Me the Truth!’ - Science as Social Construction
One of the most provocative positions regarding the nature of knowledge is followed by Bruno Latour who claims that what we perceive to be facts (e.g., Porter’s Five Forces) represent no natural necessity, but were socially constructed in the network of science.
Merton and the Matthew Effect

• Matthew Effect: science is a ‘sticky’ business because famous people tend to become ever more famous

• greater increments of recognition for scientific contributions are assigned to scientists with considerable repute, whereas scholars who have not made their mark yet are often neglected

• Consequence: misallocation of credit for scientific work if similar research findings are presented

• Example: Porter’s and Prahalad’s work on CSR

Robert K. Merton
PART III

Methodological Alternatives for Research in the Social Sciences
Purpose of Science (PART II)

What is the purpose of science? What should be the purpose of science?

Methodology (PART III)

What are the methods of science? What should be methods of science?

Social Sciences
1. Qualitative Research and/or Quantitative Research?
Consider that all three dimensions are interdependent (e.g., the theory you choose, affects the methods you may be able to use).
Comparing Two Kinds of Data - An Example

In 1988, ‘The Technology for Literacy Center’ - a computer-based adult literacy program - had to be evaluated in order to make a decision concerning future funding. Questionnaire responses to quantitative, standardized items indicated that 77% of the students were ‘very happy’ with the program. But what did the program mean to the students in their words? Open-ended group interviews revealed what it means that students were ‘very happy’.

“I don’t get lost anymore. I can find my way around. I can make out directions, read the map. I work in construction and we change locations a lot. Now I can find my way around.”

“It helps me with my medicine. Now I can read the bottles and the directions. I was afraid to give the kids medicine before because I wasn’t sure.”

“I was always afraid to read at school and at church. I’m not afraid to read the Bible now at Bible class. It’s really important to me to be able to read the Bible.” (Source: Patton, 2002)

The purpose of qualitative research is to enable the researcher to understand and capture the points of view of other people without predetermining those points of view through prior selection of questionnaire categories.
Qualitative methods are not necessarily ‘better’ than quantitative methods; a lot depends on the questions you are asking. Some questions lend themselves to numerical answers; some don’t. Especially with the occurrence of phenomena like ‘learning’, ‘intangible resources’, and ‘tacit knowledge’ (to name but a few), qualitative studies gained importance.
Making a Method Decision - Some Guiding Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the purpose of my inquiry?</td>
<td>Qualitative research can be made for different purposes: (1) evaluation of existing programs, (2) research by scholars, (3) dissertations or theses, and (4) personal inquiry. The purpose inevitably affects the audience of your study.</td>
</tr>
<tr>
<td>What is my question?</td>
<td>Although qualitative studies can be used to ‘test’ hypotheses, they are more often used to ‘create’ theory (i.e., to inductively create theory from fieldwork.)</td>
</tr>
<tr>
<td>What data will answer my question(s)?</td>
<td>Qualitative studies are usually used to gain in-depth knowledge about a limited number of cases. Qualitative inquiry asks ‘What does it mean?’</td>
</tr>
<tr>
<td>How much time do I have to conduct the research?</td>
<td>Whereas ‘open’ interviews can be conducted in a quite narrow time frame, the design of case studies consumes a lot of time. Also consider that collecting data is one thing, analyzing it another.</td>
</tr>
<tr>
<td>What are my resources?</td>
<td>For qualitative studies access to firms and people within firms is of importance. Consider that you not only need general access, but access to the right people.</td>
</tr>
<tr>
<td>How will I be evaluated?</td>
<td>Am I evaluated based on traditional criteria (e.g., rigor, validity, generalizability) or based on nontraditional criteria (trustworthiness, diversity of perspectives, clarity of voice)?</td>
</tr>
</tbody>
</table>
Particularly Appropriate Qualitative Applications - A Selection

• ‘Program Evaluation’ to find whether a program (e.g., quality assurance) works - the focus of evaluation can be quite different (e.g., on outcomes and/or processes)

• ‘Research of Processes’ (e.g., how strategies are developed over time) - processes are best researched qualitatively because: (1) depicting processes requires detailed descriptions of how people engage with each other, (2) the experience of processes typically varies among people, (3) processes are fluid and dynamic and cannot be summarized on a single rating scale or point in time, and (4) participants’ perceptions are a key process consideration

• ‘Comparative Research’ (e.g., comparing innovation management with regard to two or more case studies) - comparisons are best reached via qualitative inquiry since qualitative research can conceptually grasp the differences (e.g., with regard to perceptions and emotions) that make two cases distinct

• ‘Responsive Research’ to allow the researcher to directly respond and interact with those that are researched - qualitative research does not distance the researcher and the researched but directly involve them with each other
‘Qualitative Research’ rests on a variety of different theoretical orientations. These different theories influence the way qualitative inquiry is understood and shape the analytical framework that guides data collection and data analysis. After all, the underlying theory can significantly influence the understanding of the unit of analysis.
(Social) Constructivism

Foundational Question: How have people within a particular setting constructed reality? What are the consequences of their constructions for their behaviors and for those with whom they interact?

<table>
<thead>
<tr>
<th>Basic Beliefs</th>
<th>Effects on Qualitative Inquiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>• human beings have no access to an objective reality</td>
<td>• different people have different perceptions, all which deserve attention</td>
</tr>
<tr>
<td>• our knowledge about social reality is a product of ‘negotiations’ among people</td>
<td>• no possibility to ‘value’ any perception more or to a greater extent</td>
</tr>
<tr>
<td>• ‘truths’ and ‘facts’ are a matter of constructions, not of correspondence with some objective reality</td>
<td>• findings from one context cannot be generalized to another</td>
</tr>
<tr>
<td>• “What is defined or perceived as real is real in its consequences.” (Thomas’s theorem)</td>
<td>• power is an important factor in shaping a constructed reality and knowledge about phenomena are path-dependent</td>
</tr>
</tbody>
</table>

Elements of Qualitative Research

- **Research Design** (e.g., ‘purpose’ and ‘unit of analysis’)
 - Chapter 2

- **Data Collection** (e.g., ‘interviews’ and ‘observations’)
 - Chapter 3

- **Data Analysis** (e.g., ‘content analysis’)
 - Chapter 4
2. Designing Qualitative Studies
Qualitative Studies - Emergent Design

- **Manipulation by Researcher** = controlled settings (e.g., a laboratory) often have a predetermined course

- **Extent to which Constraints are Placed on Outputs** = extent to which predetermined categories are used

Research takes place in real-world settings and the researcher does not attempt to manipulate the phenomenon of interest. The phenomenon unfolds naturally.

Qualitative research places no prior constraints on what the outcome of the research may be (e.g., by pre-defining certain categories).

© Dr. Andreas Rasche

Philosophy of Science
Purpose is the controlling force in research. Decisions about data collection, data analysis, and also the accompanying theoretical orientation depend heavily on the research purpose.

Basic Research
- The main purpose is to understand and explain a certain phenomenon. Basic researchers work to generate new theories and/or test existing theories. Research problems are often ‘in the theory’.

Applied Research
- In applied research the source of problems is in the problems and concerns experienced by people and policymakers. Applied research often conducts studies that test applications of basic theory. In applied research there is usually less need to generalize across space and time.

Summative Evaluation
- Evaluators study programs (e.g., quality improvement) within organizations. Summative evaluation judges the overall effectiveness of programs to inform whether a program should be continued. The goal is to look at more than one program in order to generalize.

Formative Evaluation
- Formative evaluation is more depth-focused than summative evaluation. The goal is to improve a specific program (or part of a program) and to help develop it (e.g., a quality program in a specific organization that makes a case).

Scholarly Work
- Published in Journals or Books
- Dissertations & Theses

Often Work of Consultants who Compile Reports for Stakeholders
The unit of analysis (i.e. ‘that what is being studied’) is important since it limits the scope of your study and thus influences the choice of methods. The guiding question should be: *What is it that you want to say something about at the end of the study?*

Examples of Units of Analysis

- Individuals
- Groups
- Departments
- Projects & Programs
- Organizations
- Networks
- Markets

Breadth or Depth?

Do I look at a small sample (depth/individual case study) or do I try to look at more than one case (breadth) to eventually compare results?

Further Specification

- **Geographic Focus** (e.g., regions, countries, cross-country)
- **Time Focus** (e.g., critical times [e.g., restructuring], limited time of observation)
- **Event Focus** (e.g., meetings, stakeholder dialogues)
Purposeful Sampling = select information-rich cases strategically and purposefully

- **Extreme Sampling**: learn from unusual manifestations of the phenomenon of interest (e.g., outstanding success or failures, crisis situations)
- **Typical Sampling**: select cases that are ‘typical’, normal, and average for the phenomenon of interest
- **Maximum Variation Sampling**: select a small sample of great diversity to (a) have detailed descriptions of the differences between cases and (b) identify patterns among variety
- **Homogeneous Sampling**: select a small number of cases of a homogenous sub-group (e.g., ‘innovators’)
- **Snowball Sampling**: identify cases by asking others who are knowledgeable (nominations then ‘snowball’ into some core cases)
- **Criterion Sampling**: picking all cases that meet some criterion (e.g., number of employees, size of organization, revenue, etc.)
- **Theory-based Sampling**: identify cases based on criteria that derive from theory / finding manifestations of a theoretical construct (e.g., ‘knowledge workers’)

Note: These different sampling techniques are often used in combination.
Determining Sample Size

How many samples do I need for my research?

• Depending on your unit of analysis, you should fix the sample size (e.g., observe N organizations or interview N people within one organization).

• In-depth information from a very small sample (N=1) can be very useful if the case you have is information-rich. Less depth from a larger sample size can be helpful in exploring patterns and trying to document variation among cases.

• Although there is no fixed rule, it is important to recognize that sample size must fit to the purpose of the study. In general, it is better to emphasize the information-richness of a case than sample size.

• Rule of Thumb I: If the purpose is to maximize information on a topic, the sampling is terminated when no new information is forthcoming from the sampled units.

• Rule of Thumb II: Establish minimum samples based on expected reasonable coverage but be open to adjust sample size as you gain more information on the topic (emergent research design, see section 2.1).
Writing a Research Proposal - Elements of a Proposal

- What is the purpose of the study?
- Where is my ‘research gap’?
- Who is my audience?
- Who will evaluate me?

- What types of data will be collected?
- How can I secure validity?
- What are my options for data collection and analysis?
- How much time do I have (left)?

- What do I want to achieve?
- Can I formulate the goal in a rather precise way?
- Is the goal too ambitious?

Ask the right questions before you start working on your thesis, dissertation, evaluation!

Be open for elements to ‘emerge’ and change during your research.

- What is the focus of my study?
- Am I aiming at breadth or depth?
Try to discuss the research proposal as early as possible with your supervisor. Develop the proposal by following the simple advice: Iterate, Iterate, Iterate!
3. ‘Doing Fieldwork’ - Collecting Qualitative Data
Primary and Secondary Data in Qualitative Inquiry

Primary Data
(Data that is ‘newly’ gathered by the researcher)

- interviews
- observations
- case studies

Secondary Data
(Already existing data of other institutions and/or researchers.)

- organizational documents
 - existing cases
 - existing interview data

Qualitative studies usually generate new primary data since the goal is to not distance researcher and researched. To conduct qualitative research means to do research in organizations and not only on organizations.
Sources of Evidence - Ways to Collect Qualitative Data

<table>
<thead>
<tr>
<th>Source of Evidence</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
</table>
| Documents & Archival Records | • stable - can be reviewed periodically
• unobtrusive collection of data
• broad coverage of time spans | • low retrievability
• reporting bias - reflects bias of author
• access often difficult |
| Interviews | • targeted - focuses directly on topic
• insightful - provides better inferences
• emergent (when open-ended) | • interviewee often answers ‘accordingly’
• bias due to poorly designed questions
• inaccuracies due to poor recall |
| Direct Observation | • covers events in real-time
• contextual - covers context of events
• uncovers routines | • time-consuming
• bias - people act differently than usual
• cost - hours needed by observers |
| Participant Observation | • covers events in real-time
• contextual - covers context of events
• insightful into interpersonal behavior | • time-consuming
• bias - observer might manipulate event
• cost - hours needed by observers |
| Physical Artefacts | • insightful into cultural features
• insightful into technical operations
• stable - can be reviewed periodically | • selectivity - one needs to select artefacts
• interpretation bias
• reporting bias. Reflects bias of author |
Research Design versus Data Collection Source

<table>
<thead>
<tr>
<th>Data Collection Source</th>
<th>From an Individual</th>
<th>From an Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>About an Individual</td>
<td>Interviews and Observations to Grasp Individual Behavior, Attitudes, Perceptions</td>
<td>Archival Records, Documents</td>
</tr>
<tr>
<td>About an Organization</td>
<td>Interviews and Observations to Grasp Individual Behavior, Attitudes, Perceptions</td>
<td>Documented Outcomes, Organizational Policies and Culture</td>
</tr>
</tbody>
</table>
What Are Observations All About?

“Go out into the world. Live among the peoples of the world as they live. Learn their language. Participate in their rituals and routines. Taste of the world. Smell it. Watch and listen. Touch and be touched. Write down what you see and hear, how they think and how you feel.

Enter into the world. Observe and wonder. Experience and reflect. To understand a world you must become part of that world while at the same time remaining separate, a part of and apart from.

Go then, and return to tell what you see and hear, what you learn, and what you come to understand.”

Patton (2002: 330)
Observations - Looking Into the Field

Why should I use observation as a data collection strategy?

1. The inquirer better understands and captures the context within which people interact.

2. There is less need to rely on prior conceptualizations of the setting - one can be open and discovery-oriented.

3. An inquirer may see many things that routinely escape the awareness of people in the setting.

4. There is a chance to learn about things that people would be unwilling to talk about in an interview to a complete stranger.

5. Observations move beyond the selective perceptions of people in the setting that might be interviewed.

6. Data interpretation becomes easier because the inquirer can draw on personal knowledge from her/his observations in the setting.
Observers - Insider and/or Outsider?

Exchange between an inmate in jail and a student who was doing participant observation in a prison.

Inmate: “What are you here for, man?”

Student: “I’m here for a while to find out what it’s like to be in prison.”

Inmate: “What do you mean - ‘find out what it’s like’?”

Student: “I’m here so that I can experience prison from the inside instead of just studying what it’s like from out there.”

Inmate: “You got to be jerkin’ me off, man. ‘Experience from the inside...’ Shit, man, you can go home, when you decide you’ve had enough can’t you?”

Student: “Yeah.”

Inmate: “Then, you ain’t never gonna know what it’s like from the inside.”

Dimensions of Observations

Role of the Observer

Full Participant in the Setting

Onlooker Observer

Use Categories and Language of People ‘Within’ the Setting

Perspective of the Observer

Use Your Own Categories

Researcher / Team of Researchers

Who Conducts the Inquiry

People in the Setting (Collaboration)

Full Disclosure

Disclosure of the Role of the Observer

No Disclosure

Short / Single Observation

Duration of Observation

Long-Term / Multiple Observations

Narrow Focus (Single Element)

Focus of Observation

Broad Focus (Multiple Elements)

Note: Observations may move on the continuum as the fieldwork evolves.
Sources of Data During Observations I

<table>
<thead>
<tr>
<th>The Physical Setting</th>
<th>Physical environment in which people operate / should be detailed for the reader to imagine setting / requires attention to detail and discipline to avoid vague interpretative phases (e.g., ‘the firm’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Social Environment</td>
<td>Social climate in which people operate (i.e. ways in which people organize themselves) / for example social environments can be: supportive, rigid, autocratic, controlling, etc.</td>
</tr>
<tr>
<td>Historical Perspectives</td>
<td>To grasp the context of an organization requires to document and understand its history (e.g., crisis situations, hero-stories, etc.)</td>
</tr>
<tr>
<td>Formal (Planned) Activities</td>
<td>Formally scheduled and planned activities (events) / for instance: a business meeting, a consultation / Questions: Who? Where? When? What is it about? How did it go about?</td>
</tr>
<tr>
<td>Informal Activities</td>
<td>Informally non-scheduled activities (events) / for instance: lunch break conversations, gossip on the floor, a quick chat in the elevator / difficult to organize and observe, but very useful information</td>
</tr>
</tbody>
</table>
Sources of Data During Observations II

<table>
<thead>
<tr>
<th>Organizational Language</th>
<th>Language (words, phrases) that is particular to an organization (e.g., XEROX repair technicians call themselves ‘reps’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Verbal Communication</td>
<td>Include: gestures (body language), dress codes, the way people sit together / one needs to be careful when operating in an international context to not misinterpret</td>
</tr>
<tr>
<td>Documents</td>
<td>Include: records, photographs, annual reports, budgets, client files, memos, letters, etc. / negotiate access before entering a setting / if possible, compare official and unofficial documents</td>
</tr>
<tr>
<td>Observing What Does Not Happen</td>
<td>The ‘absence of occurrence’ can be important / do not list all things that do not occur, but those that you would expect to occur but that didn’t (e.g., the absence of conflict among departments)</td>
</tr>
<tr>
<td>Observing Oneself</td>
<td>Critical reflexivity/distancing and a willingness to consider how one affects what is observed / state how the background of the observer constrains observations</td>
</tr>
</tbody>
</table>
Field notes contain the ongoing data that are being collected. They consist of descriptions of what is being experienced and observed, quotations from the people observed, the observer's feelings and reactions to what is observed, and field-generated insights and interpretations.

• Field notes should be dated and contain basic information such as: where the observation took place, who was present, what the physical setting was like, what social interactions occurred, and what activities took place.

• Although it seems hard, interpretations should be distinguished from pure descriptions. (e.g., “the room is 20 square meter” is a description, whereas “the room is beautiful” is more interpretative).

• Field notes should be taken on time (as long as the observation is ‘fresh’ and immediately available). The extent to which notes are openly recorded depends on the ‘negotiated’ setting.
The new client was uneasy waiting for her intake interview.

At first the new client sat very stiffly on the chair next to the receptionist’s desk. She picked up a magazine and let the pages flutter her fingers very quickly without really looking at any of the pages. She set the magazine down, picked up the magazine again, set it back down, took out a cigarette and lit it. She watched the receptionist out of the corner of her eye and glanced at the two or three other people waiting in the room. Her eyes moved from people to the magazine to the cigarette to the people to the magazine in rapid succession, but avoided eye contact. When her name was finally called, she jumped like she was startled.
Observations and the resulting field notes are rarely used on their own. Multiple sources of information are sought and used because no single source of information can be trusted to provide a comprehensive perspective. For instance, observations themselves often say little about whether the behavior is typical or atypical.
Useful Equipment When Doing Observations and Producing Field Notes

Although written field notes are helpful, a number of technologies can support you in producing detailed notes. The nature of these technologies must be worked out in accordance with the observer’s role, the purpose of the study, and consideration how the data-gathering process will affect the activities of persons being observed.

Dictaphone to record field notes. Try to use a digital one since you then don’t have to use tapes. Dictating should happen in a private atmosphere since it might (negatively) influence the people being observed.

Digital Cameras and Video Cameras can help recalling things (and details of settings) that have happened. Videotaping observations and/or interviews can help to also include non-verbal information in the field notes.

Dictation Software (e.g., Dragon NaturallySpeaking) can help to convert taped notes into a written document. You should definitely proofread the written document since dictation software still makes many mistakes.
Interviews - ‘The Art of Hearing’

• Qualitative researchers cannot observe everything (e.g., feelings, intentions, thoughts, behavior prior to observation, etc.). The task of interviews, then, is to enter into the other person’s perspective by listening and asking the right questions.

• A good interview is not only about listening and asking but also about being fascinated by the topic you do an interview about. You should value the rich variations in human experience that qualitative interviewing can bring about.

• There are three major topics when it comes to interviewing: (1) distinguishing different types of interviews, (2) shaping the content of interviews (i.e. asking and phrasing questions), and (3) recording the responses.

• Qualitative inquiry uses mostly open-ended interviews, which means that responses are not fixed and the respondent cannot choose among a selection of fixed responses.
Interview Types I - Informal
Conversation/Unstructured Interview

<table>
<thead>
<tr>
<th>Nature of the Interview</th>
<th>relies entirely on the spontaneous creation of questions in the natural flow of an interaction / emergent questions often with a shift in focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>When to Use...</td>
<td>when the researcher can stay at the setting for a longer period of time (and thus does not depend on a single interview)</td>
</tr>
<tr>
<td>Strengths</td>
<td>flexibility, spontaneity, and responsiveness to individual differences and situational changes</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>requires more time and often more than one interview with people before a similar set of questions has been posed in order to compare responses</td>
</tr>
<tr>
<td>Nature of the Interview</td>
<td>topics and issues to be covered are specified in advance, in outline form / interviewer decides sequences and wording of questions</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>When to Use...</td>
<td>if subject areas (yet no predetermined details) are to be explored / when doing focus group interviews (keeps focus while allowing for perspectives)</td>
</tr>
<tr>
<td>Strengths</td>
<td>makes data collection somewhat systematic / interviews remain fairly conversational and flexible / comparisons easier possible</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>important topics may be inadvertently omitted / can result in substantially different responses thus reducing comparability</td>
</tr>
</tbody>
</table>
Interview Types III - Standardized

Open-Ended Interview

<table>
<thead>
<tr>
<th>Nature of the Interview</th>
<th>When to Use...</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>questions are fully worded prior to interview / the sequence of questions is determined / questions are still in an open-ended format</td>
<td>when different interviewers are used / when interviews at different points in time need to be compared / when there is only limited time for interviewing</td>
<td>comparability of answers / reduces interviewer effects and bias when several interviewers are used / facilitates organization of data</td>
<td>little flexibility in adjusting to emerging topics / individual differences and circumstances can not always be queried well</td>
</tr>
</tbody>
</table>
Context: interview employees about their experiences with an ‘ethical audit’ (e.g., SA 8000).

Informal Conversation

- Q: “Do you believe the ‘audit’ is a trustworthy exercise?”
- A: What is trust anyway? In our culture trust is defined different than in yours.
- Q: OK, so let us talk about trust in your culture... Is trust tied to the individual in your culture?

Interview Guide

- Subject/Topic 1: Trustworthiness
 - did working conditions improve
 - lip-service of management
 - possibility to file complaints
- Subject/Topic 2: Length of Audit
 - number of visits
 - any pre-audits
 - length of site visits
- Subject/Topic 3: Parties Involved
 - NGOs
 - employees
 - management
 - auditors

Standardized Open-Ended

- Q: “Considering that the audit was supposed to improve your working conditions, do you think that the conditions improved? Would you thus consider SA 8000 a trustworthy endeavor from your perspective?”
Combining Interview Types

<table>
<thead>
<tr>
<th>Conversational + Interview Guide</th>
<th>The interview guide provides the subjects about which flexible conversations are being made.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interview Guide + Standardized Quest.</td>
<td>The standardized questions specify certain key areas, while other topics are left open to conversation.</td>
</tr>
<tr>
<td>Temporal Combination I</td>
<td>One can use a standardized interview format in the early part of an interview and then gradually move to a ‘conversation’.</td>
</tr>
<tr>
<td>Temporal Combination II</td>
<td>Within an entire research project: first use conversations (to get to know people) and then move to standardized questions later on.</td>
</tr>
</tbody>
</table>
Question Options in an Interview

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristic</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience/ Behavior Questions</td>
<td>Ask what a person does or has done (e.g., experiences, activities, behaviors, etc.).</td>
<td>“If I followed you through a typical work day, what would it look like?”</td>
</tr>
<tr>
<td>Opinion/Value Questions</td>
<td>Ask about opinions, judgments, and values - what is in someone’s ‘head’.</td>
<td>“What is your opinion of this university?”</td>
</tr>
<tr>
<td>Feeling Questions</td>
<td>Ask for emotions; get responses of people to their experiences and thoughts.</td>
<td>“How do you feel about your co-workers?”</td>
</tr>
<tr>
<td>Knowledge Questions</td>
<td>Ask for the respondents factual knowledge (i.e. information).</td>
<td>“Do you know that drunk driving gets you into jail?”</td>
</tr>
<tr>
<td>Sensory Questions</td>
<td>Ask about what is seen, heard, touched, tasted, and smelled; they describe stimuli.</td>
<td>“When you enter university, what do you see?”</td>
</tr>
<tr>
<td>Background / Demographic Questions</td>
<td>Ask about age, education, occupation, gender, ethnicity, etc. - good to see how people categorize themselves.</td>
<td>“What is your educational background?”</td>
</tr>
</tbody>
</table>
Sequencing Interview Questions

1. There is no ‘one best way’ to sequence questions. Some interview types - e.g., conversational interviews - need no sequence at all.

2. It is advisable to start an interview with noncontradictional present experiences. These questions encourage the respondent to talk descriptively and to thus ‘get into the context’.

3. One can continue with questions about opinions and feelings, since these questions often build on the described experiences.

4. Questions about the ‘present’ and ‘past’ are usually easier to answer for respondents, so it is advisable to start with them to not immediately move to speculation about the future.

5. Good advise is also to not start with a long list of background/demographic questions, since this bores the respondent. If these information cannot be obtained prior to the interview, then they should be collected at the end.
Wording Interview Questions I

Asking Truly Open-Ended Questions

1. Do not provide any standard fixed-response items.

2. Do not presuppose which dimensions will be of importance to the respondent. For instance, the question “How satisfied are you with the program?” already identifies the dimensions along which this question can be answered (e.g., ‘pretty satisfied’, ‘kind of satisfied’, etc.), whereas the question “How do you feel about the program?” is more open and thus enables the respondent to come up with own dimensions.

Asking no Dichotomous Questions

1. Do not ask questions that invite a yes/no reply. Qualitative interviewing is about getting the respondent to talk about detailed experiences, feelings, opinions, etc.

2. For instance, instead of asking “Did you have a good time?” you can ask “What was the holiday break like for you?” Do not try to anticipate the answer with your question. Rule of thumb: the interviewer should talk much less than the respondent.
Wording Interview Questions II

Asking Singular Questions

1. Do not throw several questions into one. This is likely to confuse the person being interviewed about what is really being asked.

2. For instance, the question “How well do you know and like your colleagues?” contains two questions (i.e. how well you like your colleagues and how well you know them).

Asking Clear Questions

1. Use language that is understandable by the respondents and part of their frame of reference. To do so, one needs to find out what language the interviewee uses (i.e. ‘local’ language).

2. It is advisable to learn abbreviations prior to the interview (e.g., R&D) in order to ask questions the right way. Also, be careful using ‘Why-Questions’, since these questions presuppose a clear cause-and-effect relationship (e.g., ‘Why does it get dark outside?’).
Wording Interview Questions - Facilitating Responses I

• **Neutrality** is particularly important in interviewing. Neutrality means that the person being interviewed can tell me anything without engendering either my favor or my disfavor with regard to the content of her/his response. One important means to ensure neutrality is to avoid ‘lead questions’ (e.g., ‘I’ve heard a lot of positive things about this firm. What is your assessment?’). These questions ‘lead’ the interviewee into a certain direction. Another means is to provide examples prior to the questions (i.e. to show the respondent ‘I’ve seen it all...’).

• Another helpful way to ask questions is to conduct a ‘role-play’ (e.g., ‘Suppose I were the CEO of your firm, what would your reaction be like?’). This puts the respondent in the role of an expert who has ‘insider’ knowledge.

• Often, interviewers use presuppositions. Presuppositions communicate that the respondent has something to say, thereby increasing the likelihood that the person being interviewed will, indeed, have something to say (e.g., the question ‘What is the most important experience you have had during the internship?’ presupposes that there is an important experience, whereas the question ‘Have you had any experience during the internship that are important?’ requires the respondent to make a decision whether there was such an experience in the first place).
Wording Interview Questions - Facilitating Responses II

• **Prefatory Statements** are like a kind of ‘preface’ to the main question, it alerts the respondent of the nature of the question and directs awareness. A preface to the question most of the time announces its content (e.g., ‘Now, let me ask you something about any changes you see in yourself [...]’). These statements can ‘loosen’ the interview and can make it more interesting to the respondent and thus interactive.

• **Probes** are basically follow-up questions used to deepen into the interviewee’s response. Probes are detail-orientated questions (e.g., ‘When did that happen?’). A non-verbal probe can be simply to nod one’s head (as a positive reinforcement) or to remain silent at the end of the question. Clarification probes (e.g., ‘What do you mean by [...]?’) should be used carefully to not give the respondent the feeling that she/he is inarticulate.

• Since every interview is an interaction, **feedback** about how the interview is going is very important. Feedback can be used to provide recognition to the respondent (e.g., ‘I think what you are saying is very helpful.’). Feedback can be used to deepen a shallow answer. Feedback should also be given if the interviewee does not give the desired information (e.g., feelings instead of experiences). Feedback is also often given to explain why a certain question is asked (this can also be done in an ‘opening statement’).

• **Closing questions** (e.g., ‘That covers the things I wanted to ask. Anything you care to add?’) can help to get additional data.
Gathering Interview Data - Tape Recording I

The purpose of qualitative interviews is to record as fully as possible (and fairly as possible) the responses of the interviewee. Nowadays, most people don’t mind to be tape recorded, if this is explained properly. You can use, for instance, the following formulation:

“I’d like to tape record what you say so I don’t miss any of it. I don’t want to take the chance of relying on my notes and maybe missing something that you say or inadvertently changing your words somehow. So, if you don’t mind, I’d very much like to use the recorder. If at any time during the interview you would like to turn the tape recorder off, all you have to do is press this button on the microphone, and the recorder will stop.” (Patton, 2002: 381)

Tape recording permits you to be more attentive to the interviewee (e.g., by formulating probes and preparing new questions).

The use of a tape recorder does not eliminate the need to take basic notes to (a) formulate new questions during the interview, (b) locate important quotations later on, (c) have a backup in case the tape is lost. Notes should include major points, key terms, and quotations (mark quotations accordingly). Taking notes also gives the interviewee the impression that whatever she/he says is interesting and noteworthy.
Gathering Interview Data - Tape Recording II

1. **Equipment:** (1) use an external microphone, (2) check batteries regularly, (3) use tapes of 60 minutes or less (longer tapes are more likely to stretch or break), and (4) take along extra tapes.

2. **Before the Interview:** (1) choose a quiet place that is free from interruptions, (2) speak loud and place the microphone close to the respondent, (3) test the recording system, and (4) be sure that there is sufficient time between interviews in order to prepare and reflect.

3. **During the Interview:** (1) speak clearly and not too fast, (2) ask the respondent to speak up (if necessary), (3) run a short test with the respondent, (4) turn off the recorder during extended side conversations, breaks, and/or interruptions, and (5) indicate the end of the interview on the tape.

4. **After the Interview:** (1) listen to the start, middle, and end of the tape, list proper names and unfamiliar or unusual terminology to help the transcriber, (2) label tapes in order to not lose track, and (3) record details about the setting and your observations (this gives a context for data analysis).
4. ‘Writing It Up’ - Organizing, Analyzing and Reporting Qualitative Data
What To Do With the Data?

• Qualitative data analysis transforms collected data into research findings. The challenge here is that, contrary to quantitative analysis, which relies upon predefined statistical tools, in qualitative analysis there is no standard recipe.

• Rigor, duration, and procedures of analysis depend on the underlying purpose of the study (see section 2.2). A vital point is also whether you (a) want to create hypotheses, (b) test already existing hypotheses, or (c) do not rely on hypotheses.

• Master and/or Bachelor theses and dissertations are usually based on basic qualitative research. The analytical focus here derives primarily from (a) the purpose of the study, (b) the underlying theoretical framework, and (c) the contribution the study wants to make to the literature (e.g., Do you want to ‘produce’ a theory?).

• Data analysis in qualitative research contains both description and interpretation (‘why’ questions). Before interpretation, the description of data is necessary (e.g., by identifying patterns).
Qualitative Data Analysis - Description I

Software doesn’t really ‘analyze’ data - it facilitates data storage, coding, retrieval, and linking (especially when there is a lot of data). Software packages can be used to:

• simply retrieve text (data),

• code the data (i.e. look for patterns, themes, topics, etc. that occur),

• build theories (i.e. link the coded data in a way that you can fulfill the purpose of your study and answer the research question).

The most widely used software packages are:

• NVivo (www.qsrinternational.com) - US$ 445
• QSR N6 (www.qsrinternational.com) - US$ 340
• TAMS (www.sourceforge.net) - Freeware
• Qualrus (www.qualrus.com) - US$ 399
Qualitative Data Analysis - Description II

The first task in the data analysis phase should be to ‘code’ the raw data. Thus, developing some manageable coding or classification scheme is the first step of analysis. In fact, you look at what the ‘is there’ (i.e. what the data tells you) and give it a name. It is a little like developing an index for a book. Consider that in large projects a coding system needs to be jointly developed.

To develop codes, the researcher has to look for regularities in the data. These regularities reveal patterns that can be sorted into categories and thus bring about the codes.

Code Examples:

<table>
<thead>
<tr>
<th>Code:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es Re Prog</td>
<td>employees reaction to a program</td>
</tr>
<tr>
<td>Ms Re Prog</td>
<td>managers’ reaction to the program</td>
</tr>
<tr>
<td>Ob EE</td>
<td>observation of employees’ interaction</td>
</tr>
<tr>
<td>Ob MM</td>
<td>observation of managers’ interaction</td>
</tr>
<tr>
<td>C!</td>
<td>conflicts</td>
</tr>
<tr>
<td>Phil Prog</td>
<td>statements about the philosophy of the program</td>
</tr>
<tr>
<td>C-E-MM</td>
<td>conflicts between employees and management</td>
</tr>
</tbody>
</table>
Qualitative Data Analysis - Description III

The coded data is categorized according to the purpose of the study. Categories can occur with regard to...

<table>
<thead>
<tr>
<th>Storytelling Approaches</th>
<th>Chronology and History</th>
<th>Describe what happens chronologically over time (e.g., portray the life of a person, the history of an organization, etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flashback</td>
<td>Start at the end, then work backward to describe how the ending emerged (i.e. how did the outcome come about).</td>
</tr>
<tr>
<td>Case Study Approaches</td>
<td>People</td>
<td>If individuals or groups are the primary focus of the case, then these should also be the focus for the organization of data.</td>
</tr>
<tr>
<td></td>
<td>Critical Incidents</td>
<td>Critical incidents or major events that shape the case (e.g., a crisis in an organization).</td>
</tr>
<tr>
<td></td>
<td>Various Settings</td>
<td>Describe various places, sites, settings, or locations. First do mini-cases on each (e.g., a country), then do cross-comparisons.</td>
</tr>
<tr>
<td>Analytical Framework Approaches</td>
<td>Processes</td>
<td>Processes such as communication, decision-making, recruitment etc. can be the focus of analysis.</td>
</tr>
<tr>
<td></td>
<td>Issues</td>
<td>An analysis can be organized to illuminate key issues (e.g., negotiation skills and conflict management are issues of ‘training’).</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>Responses to semi-standardized interviews can be organized question by question.</td>
</tr>
<tr>
<td></td>
<td>Sensitizing Concepts</td>
<td>Where sensitizing concepts are used (e.g., ‘leader’ versus ‘follower’), these can be used to organize the data.</td>
</tr>
</tbody>
</table>
Much qualitative inquiry stops with the presentation of case data (e.g., patterns) and cross-case descriptive comparisons aimed at enhancing understanding rather than explaining ‘why’. Interpreting qualitative data asks: What does it mean? What does it tell me about the nature of the phenomenon of interest?

Interpretation means attaching significance to what was found, making sense of findings (e.g., patterns in the data), offering explanation, drawing conclusions, and extrapolating lessons. In a very general sense, interpretation tries to:

- confirm what we know that is supported by data,
- disabuse us of misconceptions, and
- illuminate important things that we didn’t know but should know.

Thus, interpretation can bring about explanations ‘why’ something happened or did not happen. Interpretation of data can there give rise to: causes, relationships (linkages), consequences, etc.
Reporting means that you ‘tell your story’ to your intended audience. Assuming that your audience is your supervisor for the Bachelor/Master thesis, you should consider some rather general lessons:

- Do not include too much description in the main text (interviews, field observation notes, etc.) should be included in the Appendix. Keep direct quotations to a minimum.

- Be aware whether you just describe things or interpret them. Some studies do not require interpretation but description, whereas others call for both.

- A ‘methods chapter’ is inevitable when reporting a qualitative study. The chapter should include: (1) your basic theoretical orientation (if there is one), (2) the ways you collected data, and (3) the ways you analyzed data. The ‘methods chapter’ should also contain some reasoning regarding the sampling strategy and sampling size.

- Using metaphors is a way to better communicate your message. Yet, metaphors need to be selected carefully (a) to not insult others (e.g., by sexist language) and (b) to serve the data that is available.
5. Doing Case Study Research
What are Case Studies?

• The case study approach is a **specific way to organize and analyze data**. Case analysis involves organizing the data by specific cases for in-depth study and comparison. Once case studies have been written, analytical techniques can be employed to analyze, interpret, and compare.

• Cases can be: individuals, groups, organizations, networks, regions, etc.

• ‘How’ and ‘Why’ questions are likely to lead to the use of case studies, since such questions deal with operational links needing to be traced over time rather than mere frequencies. For instance, the question ‘How did an organization adopt a Balanced Scorecard?’ can be organized around a case. By contrast, ‘What’ questions are typically hard to address through cases (e.g., ‘What has been the outcome from a Balanced Scorecard implementation?’).

• Case studies can rely on qualitative and quantitative data and have a range of **applications**: (a) to explain a phenomenon, (b) to describe and illustrate a phenomenon, and (c) to explore a phenomenon.
The Case Study Research Process

Generally speaking, case study research shares a lot with the overall research process within qualitative research. Yet, there are some particularities which make case study research ‘special’.

- Designing the Case
- Preparing for Data Collect.
- Collecting the Evidence
- Analyzing the Evidence
- Reporting the Case

Particularities:
- criteria for judging case quality
- design options
- case study protocol
- pilot case study
- documents
- cross-case analysis
- reporting strategies

© Dr. Andreas Rasche Philosophy of Science 86
Designing the Case - Case Study Designs

single-case designs

holistic
(single unit of analysis)

CONTEXT

CASE

embedded
(multiple units of analysis)

CONTEXT

CASE

Embedded Unit of Analysis

multiple-case designs

CONTEXT

CASE

Embedded Unit of Analysis

CONTEXT

CASE

Embedded Unit of Analysis

CONTEXT

CASE

Embedded Unit of Analysis

Embedded units of analysis can be: multiple projects within an organization or different kinds of staff.
Preparing for Data Collection - The Case Study Protocol

An important task while preparing a case study is to write a case study protocol. The protocol is intended to guide the investigator in carrying out the data collection and thus keeps her/him targeted on the subject of the case study. It also helps to anticipate several problems. As a general matter, a case study protocol should have the following sections:

1. **Overview of the Case Study Project** (objective, auspices, relevant readings about the topic, etc.)

2. **Field Procedures** (presentation of credentials, access to the case study sites, general sources of information)

3. **Case Study Questions** (the specific questions that must be kept in mind while collecting data and the potential sources for answering each question)

4. **Guide for the Case Study Report** (outline, format for the data, use and presentation of other documentation)
Preparing for Data Collection - The Pilot Case Study

A pilot case study helps to refine the data collection plans with respect to both the content of the data and the procedures to be followed. A pilot test is not a pretest because you try to ‘develop’ relevant lines of questions instead of ‘testing’ them. The goal is to get some conceptual clarification regarding the research design.

Selection of Pilot Case: based on convenience, access, and geographic proximity

Nature of the Pilot Case: to check the relevance of questions and the logistics of the field inquiry (e.g., If there are multiple members of the research team, how do they interact, and what are their responsibilities?)

Reporting the Pilot Case: mainly for investigators themselves in order to focus the final case(s), the report should be written down so that it can be used as a point of reference
Data collection in case study research is not much different from qualitative data collection in non-case-based settings. Yet, within cases the role of documents is generally higher since explicit documentation is usually one aspect of the everyday life within organizations (or other units of analysis). Documents include:

- letters and memoranda,
- archival records,
- agendas, announcements, and minutes of meetings,
- administrative documents (e.g., proposals and reports),
- already existing other ‘cases’ about the site being studied, and
- articles and videos in the mass media (i.e., newspaper, TV, Internet).

Documents should be carefully used and always questioned regarding their ‘objectivity’. Every document is written from someone to somebody with a purpose in mind. It is important to allocate extra time for analyzing documents while being in the field. Documents are especially helpful to trace lines of communication and internal networks.
Analyzing the Evidence - General Analytic Strategies

Relying on Theoretical Propositions
- follow the theoretical propositions that led to the case study
- propositions help to focus attention on certain data and ignore other data

Thinking about Rival Explanations
- either the original propositions might have included rival hypotheses or such hypotheses occur during the research
- this strategy tries to reject or put confidence in your findings by ruling out rival explanations

Developing a Case Description
- the original objective of the case might not have been a descriptive one, but a descriptive approach may be helpful to identify patterns in the data

The best preparation for conducting a case study analysis is to have a general analytic strategy. The strategy helps you to treat the evidence fairly, produce compelling analytic conclusions, and rule out alternative interpretations.
Pattern matching compares an empirically based pattern with a predicted one (or with several alternative predictions). There are different forms of pattern matching:

- **Dependent Variables as Pattern**: one can identify certain dependent variables prior to research to then link case patterns to these variables (e.g., the claim that ‘organizational conflicts will increase’ can act as a dependent variable pattern which can be conformed or denied by a pattern).

- **Rival Explanations as Pattern**: calls for the development of rival theoretical propositions as patterns to then confirm one of them by the case(s) used; the basic assumption is, that if one explanation is valid another cannot be.

- **Explanation Building as Pattern**: this technique demands to not compare patterns, but to build patterns and thus ‘explain’ the case; hence the goal is mainly to develop ideas (i.e. propositions) for further study; the explanations are usually the result of a series of iterations: (1) there is an initial proposition, (2) the findings are compared against the initial case, (3) the proposition is revised, (4) the revision is compared against other cases until a ‘solid’ pattern emerges.
Reporting the Case - Some General Lessons

Reporting case studies means to bring its results and findings to disclosure. When reporting case studies, the structure of the ‘final report’ depends a lot on your audience. Regardless who your audience is, some general lessons are helpful when reporting case studies.

1. Propose portions of the case study early (e.g., the methods section) rather than waiting until the end of data analysis.

2. Be sure that you target your audience (expectations of audiences differ).

3. Make sure that your case informants review the draft case to (a) check whether the information reported is correct and (b) whether information has been unwillingly reported.

4. Check whether case identities are supposed to be ‘real’ or kept ‘anonymous’.

5. Make sure that the reported information and resulting claims have evidence. This also depends on the ‘completeness’ of your information (e.g., whether you talked to all key informants).

6. Make sure that the case reports on rival perspectives (if there are some).
PART IV

Writing for Scholarly and Non-Scholarly Publication
Before Writing - Choosing a Topic

• Basic Question: *What is of interest to you?*

• Even though there is an emergent aspect to choosing a topic, you should have a good idea about what to write before you start the project. *One possible* way to narrow down a topic is to understand that scholarly activity is clustered, although this pyramid cannot be applied to each discipline.

• Although it is good to know whether to work empirically or not before you start writing, it is possible that the need/opportunity for empirical research emerges during the research project.
Before and While Writing
- Looking for Literature

• Usually, you have way too much literature. Try to narrow it down by identifying ‘important’ pieces of work.
 • A good indicator whether a piece of work is important is its citation frequency in other studies. (In case you are doing theory-critical work this might not work, since then you have to look for what everybody else is not thinking about).
 • Also look the quality of the journal the article is published in. A good indicator is given by various Journal Quality Rankings (for a meta-ranking see www.harzing.com).

• Identify keywords up front to look for literature.

• Avoid unauthorized sources from the Internet.

• Most studies contain a so-called literature review (i.e. a chapter which basically reports existing studies on your topic). Consider that a literature review should never be an end in itself. Experienced researchers conduct a literature review in order to develop sharper and more insightful questions about the topic of interest and not to find answers.

• Most important: take notes while reading!
Documenting literature (i.e. classifying it) with software makes sense if you have more than 100 references. The documentation helps you (a) to avoid that you study documents more than once, (b) to have your own ‘search engine’ while writing, and (c) to have a program that does the bibliography for you.

These software packages allow you to:

- organize references and images,
- construct your thesis with built-in templates,
- search databases on the internet and import the references,
- apply different bibliography ‘styles’ to your thesis, and
- export and import bibliographies of your colleagues.

EndNote (recommended for Windows® user)

www.endnote.com (239 US$)

Bookends (recommended for Mac OS X® user)

www.sonnysoftware.com (65 US$)
Despite conventional wisdom, making an outline actually is the hardest part of writing a thesis. An outline summarizes the order and logic of a written piece of work. Here is some advice:

• Write topic sentences before full text.

• The heading needs to speak for itself (e.g. ‘Networks’ is not a heading, but’ Strategic Networks - Definition and Critical Reflection’ is one).

• Consult your exemplars’ outlines as a source of outlining advice. This, however, can also be dangerous, because it can lure you into old messages, whereas your contribution depends on saying something new. So the advice is: *Be innovative with form and content, but only with a purpose.*

• Do not conclude with a discussion of your thesis’ limitations. Although it is important to know the limits of your study, you should not leave the reader mulling over the things you did (or did not).

• Check your outline by cutting out entire sections. Do I really need this argument? Usually students begin with too much background (which represents the process of reading they have gone through).
• Make the contribution of your thesis very clear. Do not hide your unique message until the very end, but try to ‘send it’ by using informative headings. (As a more radical suggestion you can try to make your conclusion the introductory chapter.)

• Is the basic message of the thesis clear from reading topic sentences? Try to use headings that provide more detail yet are not too long (e.g., ‘Conflicting Approaches to Understanding X’).

• Do not use too many subheadings (e.g., 3.2.3.4.5 in a 60 page thesis makes no sense since you cannot sufficiently support it with text and an argument).

• Discuss your outline with your supervisor and friends/family. It is always a good sign if ‘scientific strangers’ understand the way your arguments runs.

• Never understand your outline as finished. Making an outline is an emergent process.
Selecting a Title and Writing an Abstract
(It Is More Important Than You Think!)

• The ‘right’ title and abstract help you to attract the ‘right’ audience for your contribution. Ideally, the title and abstract develop interest in reading your work (a lot of people only read title and abstract and never turn to the ‘real’ text).

• TITLE:
 • should be informative, however not too long (e.g. ‘Towards a Research Agenda for Field X’ says not as much as ‘Towards an International Research Agenda for Field X’)
 • even though some ‘weird’ titles sound cute and might catch attention, they can turn out to be dangerous since they do not say much about the actual content
 • indicate when the contribution is (a) a pure literature review and (b) uses a specific case

• ABSTRACT:
 • usually between 150 and 200 words
 • provides further information about the main subjects covered in the paper (e.g., theories discussed)
 • summarizes your contribution to the field (does not contain the entire structure of the article)
 • provides information about the type of contribution (e.g., empirical, conceptual, critical, etc.)
Writing an Introductory Section

There surely is no ‘one-best-way’ to write an introductory section and much depends on. Yet, an introductory section can include the following argumentative chain of evidence:

1. What is my research problem and motivation for writing the thesis?
2. While looking at the available literature, can I overcome this problem?
3. What is the resulting research gap and contribution of my study?
4. What is my key argument to close this research gap?
5. What is my resulting key objective?
6. How do I proceed to reach this objective?

This is not a ‘straightjacket’ but just raises important issues that you may want to address in your introductory section. Generally speaking, the introductory section shows the context and motivation of your work and helps the reader to gain an overview about what you are arguing for/against in your thesis.

Show that you read the literature by citing others’ work. The introductory section usually contains a lot of literature to set the context and justify the contribution.
What to Write?

• Although there is no standardized structure for a paper/thesis, there are some sections that commonly appear in, mostly empirical, writing.

 - Introduction
 - Literature Review
 - Methodology
 - Findings/Presentation of the Data
 - Implications/Discussion/Framework
 - Conclusions/Outlook

• Remember to back your arguments up with appropriate sources. **Cite the sources when you discuss the issues** (not just at the end of a section/paragraph).
You cannot learn writing like you learn mathematics. Some people are more skilled while some struggle more. Yet, everybody can write.

- Keep a ‘dump’ at the end of your document file for material that must be pruned. Stay focused on what you write.

- ‘Always leave something easy to write as a warm-up task for the next day.’ (E. Hemingway)

- Commit to writing a first draft in a short period of time. Make a commitment. Inspiration often comes from sheer panic and having an early draft leaves you enough time to do ‘iterations’ until you have a final product. This approach also helps to discover major deficits (e.g., regarding logic, data, etc.) at an early point in time.

- Try to avoid duplicating arguments (although this might be needed in order to make a point). Also: avoid unnecessary information (e.g., historical information). If it is worth saying, say it, otherwise leave it out.

- After all: Learn from your own writing experience. What days, and time of day, were you able to write well? Where did you do your best writing? What helped to inspire you?
Looking at an Example

Jeffrey Unerman and Mark Bennett (2004):
Increased Stakeholder Dialogue and the Internet:

Issues for Discussion:

1. How do you rate the title and abstract of this paper?
2. Do you think that the introductory section is appropriate? Why?
3. Is the structure of the paper accessible?
“It requires a very unusual mind to undertake the analysis of the obvious.”

Alfred North Whitehead (1861-1947) English Philosopher and Mathematician